
*This paper was commissioned by Volpe Welty Asset Management, L.L.C.

Latency

and the Quest for Interactivity

Stuart Cheshire*
cheshire@cs.stanford.edu

http://www.stuartcheshire.org/

November 1996

Abstract
Many kinds of current network hardware, modems especially, have latencies many times worse than they need to be.
There’s no strong technical reason why the latencies are so bad; the root cause is one of perception. The buying
public, and modem manufacturers, concentrate solely on one parameter — throughput — so not surprisingly latency
gets ignored and as a consequence suffers badly.
Poor latency, not limited throughput, is the factor that is hindering the development of a whole class of networked
application software — interactive games, conferencing software, collaborative work software and all forms of
interactive multi-user software.

“The entire focus of the industry is on
bandwidth, but the true killer is latency.”

Professor M. Satyanarayanan,
keynote address to ACM Mobicom ’96.

Introduction
Interaction is fundamental to human experience.
Whether we’re dealing with people or objects, interac-
tion is essential. We perform some action, and when
we observe how the person or object reacts we modify
our behaviour accordingly. Sometimes the reaction
needs to be very quick, like when we’re having a
conversation or fighting with swords, and sometimes a
slow reaction is adequate, such as carrying out a
lengthy postal correspondence with a distant relative,
but it is rare that we perform an action without wanting
some kind of feedback by which to observe the results
of that action.
We would like to be able to use computers and
computer networks to facilitate not only slow human
interactions like written correspondence, but also rapid
interactions as well.

This leads us to two questions:
Firstly, how fast would response times need to be to
provide us with the full gamut of human interactive
experience? The answer to this question tells us the
target interactive response time that we should be
aiming for.
Secondly, can computer networks achieve that target
response time? Is there some physical limit that
prevents us from reaching the required performance?
As we will see, the speed of light does become a seri-
ous limitation when we are communicating with people
on the other side of the planet. The good news is that
most of the time we are communicating with people
much closer than that, and most of the problems with
current computer networks are things that are within
our power to fix (unlike the speed of light, which we
are unlikely to change).
Many components of today’s computer systems —
modems especially — are nowhere near to the limits
imposed by the speed of light and offer huge opportu-
nities for quite dramatic improvements. The rewards
are there for the taking, for those prepared to meet the
challenge.

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 2 —

Section 1:
Limits of Human Perception
Our first question was, “How fast would response
times need to be to provide us with the full gamut of
human interactive experience?”
A number of parameters of human perception that
might help us answer this question have been studied
extensively.

Audio
It is known that typical human hearing cannot detect
frequencies much above 20kHz. Shannon’s sampling
theorem says that a sampling rate of 40 000 samples
per second can record frequencies up to 20kHz. Com-
pact Discs are recorded at 44 000 samples per second
and Digital Audio Tape is recorded at 48 000 samples
per second. The decision to use 48 000 samples per
second for DAT was made not because the quality
would be higher — human beings are unable to tell the
difference — but simply because they wished to use a
rate that was significantly different to CDs to prevent
music pirates from being able to easily make direct
binary copies from CD to DAT. There is no point
doing computer audio for human listeners at rates
higher than 48 000 samples per second.

Video
Similar parameters are known for the human visual
system. The threshold of motion fusion — the point
where a rapid sequence of still images creates the illu-
sion of movement — is about 8-12 frames per second.
Typical Saturday morning television cartoons are made
at this frame rate. The threshold of smooth motion is
about 24-30 frames per second. Cinema films and tele-
vision pictures run at this frame rate. Interestingly, the
threshold of flicker perception is higher — about 50-75
flashes per second. Even though 30 images per second
create a convincing illusion of smooth motion, a light
flashing 30 times per second creates visible flicker.
That’s why NTSC television has 30 frames per second,
but uses a technique called interlacing to divide every
frame into a odd and even field, to produce 60 flashes
of light per second so that the flicker is not visible.
PAL television operates at 25 interlaced frames per
second giving 50 fields per second. Cinema movies are
filmed at 24 frames per second, but high quality pro-
jection equipment displays those 24 frames per second
using two flashes of light per frame, to produce 48
flashes per second. Some people are able to perceive a
slight flicker at that rate. High quality computer
monitors operate at 75 (non-interlaced) frames per
second, which is high enough that no one can see the
flicker. It is surprising, I think, to find that all the

world’s display systems fall into such a relatively
narrow range.

Interactivity
Given that other human perception parameters are
known so accurately, you might think that the thresh-
old of interactive response would be another well-
known, widely studied parameter. Unfortunately it is
not. For a number of years I’ve been interested in this
question and I’ve asked a number of experts in the field
of computer graphics and virtual reality, but so far
none has been able to give me an answer. There seems
to be a widespread belief that whatever the threshold of
interactive response is, it is definitely not less than
15ms. I fear this number is motivated by wishful
thinking rather than by any scientific evidence. 15ms is
the time it takes to draw a single frame on a 66Hz
monitor. Should it turn out that the threshold of inter-
active response is less than 15ms, it would be dire news
for the entire virtual reality community. That would
mean that there would be no way to build a convincing
immersive virtual reality system using today’s monitor
technology, because today’s monitor technology
simply cannot display an image in under 15ms. If we
find that convincing immersive virtual reality requires
custom monitor hardware that runs at say, 200 frames
per second, then it is going to make effective virtual
reality systems prohibitively expensive.
Given that the one universal truth of all current head-
mounted virtual reality systems is that they rapidly
induce nausea in the viewer, I’m not yet prepared to
rule out the possibility that threshold of interactive
visual response might turn out to be less than 15ms.
However, this news is not as hopeless as it may sound.
There may be more than one threshold of interactive
response, for different kinds of interactivity. The eyes
are very closely coupled with the brain, both
neurologically and in terms of physical location.
Helping to maintain balance is one of the more de-
manding tasks the visual system is required to perform.
It allows us to perform the remarkable feat of being
able to run over rough terrain without falling down. It
is to be expected that the mental processes that coordi-
nate head movements with signals from the inner ear
and from the eyes to achieve this would require very
fast pathways from the eyes and the ears.
It is almost certain that the response time required for
convincing hand/eye coordination is much less. For
one thing, the hands are a lot further from the brain that
the eyes are, and it takes signals considerably longer to
travel that distance through the nerve fibres. One rami-
fication of this is that although it may be difficult to
achieve wide-area network response times under 15ms,
that may not be necessary. The changes in the visual

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 3 —

display that are needed in response to a movement of
the head can be computed locally without needing any
communication over the network. Interactions with the
virtual world, such as picking up an object from a
table, may need communication over the network, but
such communication will probably not need the very
fast response time that head-tracking interactions do.
Computing responses locally is not a new idea. Even
the human body does it. If we touch a hot object we
react by quickly withdrawing the limb in question. That
flinch reflex is controlled by nerves in the spinal
column, not the brain, because sending the pain signal
all the way to the brain and waiting for a response
would take too long. Sometimes the flinch reflex is the
wrong reaction, but generally our reflexes protect us
more than they hurt us. One of the challenges of using
local computation is to try to minimize both (a) the
number of cases where the wrong response is com-
puted, and (b) the adverse effects that occur if that does
happen.

100ms
As another data point, the rule of thumb used by the
telephone industry is that the round-trip delay over a
telephone call should be less than 100ms. This is
because if the delay is much more than 100ms, the
normal unconscious etiquette of human conversation
breaks down. Participants think they hear a slight pause
in the conversation and take that as their cue to begin to
speak, but by the time their words arrive at the other
end the other speaker has already begun the next sen-
tence and feels that he or she is being rudely
interrupted. When telephone calls go over satellite
links the round-trip delay is typically about 250ms, and
conversations become very stilted, full of awkward
silences and accidental interruptions.
For these reasons I’m going to suggest 100ms as a
target round-trip time for general network interaction.
Some interactions may require a faster response time
than this, but these interactions should hopefully be
ones that can be computed locally without resorting to
network communication. Some styles of interaction,
like playing a game of chess, may work effectively
with delays longer than 100ms, but we don’t want to
limit ourselves to only being able to support these
limited kinds of interaction.
There are also ‘latency hiding’ techniques that can help
create the illusion of the latency being lower than it
really is, but these techniques don’t provide true inter-
activity; they only provide the illusion of interactivity.
The illusion of interactivity may be better than no in-
teractivity at all, but it is not as good as the real thing
Consider a computer sword fighting game. You make a
thrust with your sword, your opponent sees the thrust

and parries, you see his parry and adjust your attack
accordingly. For this kind of tightly coupled interaction
to work, your thrust has got to be communicated over
the network to your opponent and drawn on his screen,
and his response to what he sees on the screen has to be
communicated over the network back to you and drawn
on your screen before you can see it and respond. An
example of a latency-hiding technique in this case
would be to have your own computer predict reactions
locally. When you make a thrust with your sword, your
computer predicts that your opponent will parry in a
certain way and updates your screen appropriately,
without waiting for the real response to actually come
back over the network. In this case you are not really
interacting with your opponent; you are interacting
with your computer, but you have the illusion that you
are interacting with your opponent. Very good predic-
tive software could make it a very convincing illusion,
but it is still an illusion. If your opponent cleverly
responds to your thrust in a different, unexpected way,
then you’re going to find that what’s happening on
your screen is not the same as what’s happening on his.
Your computer’s locally predicted response was wrong
in this case, and your computer now has the problem of
finding some way to resolve the inconsistency without
you noticing. If, on your screen you sliced him through
the heart, but on his screen he deflected the blow, it is
going to be pretty difficult for the computer to resolve
that without the players noticing.
Latency hiding techniques are valuable, but they are no
substitute for the real thing. Our target should be to get
true interactivity with a response time of 100ms or less.
Since we know it takes the electron beam of the
monitor at least 15ms to draw the image on the
screen’s phosphor at each end, that accounts for 30ms
of the time delay, leaving only 70ms1 for network
communication, or 35ms each way (and that’s optimis-
tically assuming that the software overhead is negligi-
ble). A 70ms round-trip delay is no easy goal to aim
for, but it is important to know the challenge that lies
ahead.

1 In Wired 4.10, page 133 (October 1996) James
Martin also quoted the same target round-trip delay:
70ms. (Unfortunately the rest of his logic was flawed.
He forgot that to determine response time you need to
measure the round-trip delay, not the one-way delay,
and he used the speed of light in vacuum for his
calculation, not the speed of light in glass fibre, which
is typically 33% less. This made his final result out by
a factor of three, but his initial value of 70ms was
correct.)

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 4 —

Some people claim to have written (and patented)
software than can invisibly mask the effects of network
round-trip delays of one second or even more, and they
are actually glad that modems have poor latency
because they think it gives value to their patents. This
belief reflects a failure to understand the basic nature of
the problem. Let me illustrate with another simple
example. Say I toss a ball across the room to you in our
simulated computer world. I need to see on my screen
whether you (a) caught the ball, (b) tried to catch the
ball but failed, or (c) ignored it and let it fall to the
floor. To achieve this, my computer needs to tell yours
that I threw the ball, yours needs to display that on its
screen, you need to decide to react (or not, as the case
may be), and your computer needs to tell mine how
you responded. Only then can my computer update its
screen to display the appropriate outcome. Unfortu-
nately if I toss a ball across the room to you in the real
world, you will have caught it (or not) half a second
later. If our network round-trip delay is one second,
then there is no way that our computer simulated world
can ever reproduce this behaviour. There is no way for
me to find out how you actually responded within the
half second time interval necessary to display the result
on my screen. My computer could predict how it ex-
pects you to respond, but if it predicts wrongly, the
illusion of reality in our artificial world will be shat-
tered. Another obvious ‘solution’ is to insert a one-sec-
ond delay between me pressing the control to throw the
ball and my character in the world actually throwing
the ball. This would allow your computer the one sec-
ond it needs to update your screen and communicate
your response back to me in time to draw it on my
screen, but it hasn’t actually solved the true problem.
This ‘solution’ does not facilitate our desired interac-
tion — me pressing the control to throw a ball to you
and seeing half a second later whether or not you
caught it — it simply prohibits any interaction that
rapid. Remember in the introduction I stated that our
goal is to support the full gamut of human interactive
experience, not to prohibit the interactions that are dif-
ficult to support
Latency hiding techniques are valuable, but as ex-
plained before they are a necessary evil, not a desirable
alternative to true low-latency communication.
Finally, you’ll notice that so far I’ve not made any
mention of the amount of data we have to send, only
how long it should take. The amount is secondary. The
primary concern is the time it takes. Bandwidth is sec-
ondary. Latency is the critical factor. This is odd, don’t
you think? Currently, modem makers care only about
throughput, not at all about latency. The throughput of
a modem is written in huge type across the front of

every box, but the latency is nowhere to be seen. This
is a theme we will return to.

Section 2:
Limits of the Physical Universe
Our second question was, “Can computer networks
ever achieve our target response time of 70ms?”
We’re not used to worrying about the speed of light
being a problem in everyday life but in this case it can
be.
The speed of light in vacuum is 300 000 km/sec and
the speed of light in typical glass fibre is roughly 33%
less, about 200 000 km/sec. How long would it take to
send a signal to someone on the far side of the planet
and get a response back?

Speed of light in vacuum = 300 000 km/sec
Speed of light in glass fibre = 200 000 km/sec
Circumference of earth = 40 000 km
Total round-trip delay
to far side of the planet and back = 40 000/200 000

= 200ms
So, sadly, the best response time we can hope to get to
someone on the other side of the planet is 200ms, a
long way short of our target for interactivity. Interac-
tions with people on the far side of the planet are going
to need the benefit of latency-hiding techniques, and
true tightly-coupled interactivity will not be possible.
We will probably never be able to have a truly interac-
tive virtual sword fight with someone on the far side of
the planet.
However, we’re not usually communicating with
people on the far side of the planet. Most of the time
we’re communicating with people much closer to
home. Might we be able to get true interactivity with
people closer to us? Could we do it within the United
States?

Distance from Stanford to Boston = 4400km
One-way delay to Boston = 4400/200 000

= 22ms
Round-trip to Boston = 44ms

This result is promising. Within the United States we
should be able to achieve true interactivity. The speed
of light consumes 44ms of our 70ms time budget,
leaving us with 26ms for software overhead in the
network, the endpoints, and the graphics systems. Not
an easy challenge, but at least it’s nice to know it’s
possible.
Interestingly, the current Internet is already doing quite
well in this respect. If I ping a well-connected host at

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 5 —

MIT from a well-connected host at Stanford, the meas-
ured round-trip delay is about 79ms:
> ping -c 1 lcs.mit.edu
PING lcs.mit.edu (18.26.0.36): 56 data bytes
64 bytes from 18.26.0.36: icmp_seq=0 ttl=239
time=78.6 ms

The Internet backbone is already operating within a
factor of two of the theoretical best possible round-trip
delay. This is very reassuring. Over the next few years
we can expect the latency of the Internet backbone to
drop steadily towards the theoretical minimum. Coast-
to-coast interactivity is within our grasp.

Section 3:
Current Computer Hardware

Modems
Those of us not lucky enough to have a direct Internet
connection have to dial in to an ISP using a modem.
Modems have much lower bandwidth than Ethernet,
but that’s not a problem for most interactive applica-
tions like games. What matters is the time delay — the
latency — not the bandwidth. Interactive applications
often don’t need to send very much data, but the little
bits they do send should be sent quickly, to create a
quality interactive experience.
Unfortunately, current modems fail very badly in this
respect. Say I’m 10km from my ISP (Internet service
provider). What is the speed of light limit over this
distance?

Speed of light in glass fibre = 200 000 km/sec
Round-trip distance = 20 km
Speed of light round-trip delay = 20/200 000

= 0.1ms
Actual round-trip delay using
a typical current modem = 260ms

Current modems fall a long way short of the physical
limits imposed by the speed of light. What is going
wrong here?
Let us analyse what is happening. The time delay for a
single packet one-way transmission has two compo-
nents:
1. Queuing delay in the network
2. Transmission time
The queuing delay in the network occurs when network
links or routers are congested, and packets have to be
queued. With techniques like packet prioritization and
Weighted Fair Queueing [Dem89] [Par92] the queuing
delay can be reduced effectively to zero. Bulk file
transfer traffic may be delayed by queues, but because
interactive traffic always goes to the front of the queue,

from its point of view it is as if there were no queue
there at all.
Also, at the user’s own modem, unless the user is doing
something else at the same time as playing the game,
there should be no queueing at all.
That leaves us with transmission time to consider. At
each hop, the transmission time has two components:
1. Per-byte transmission time
2. Fixed overhead
Per-byte transmission time is easy to calculate, since it
typically depends only on the raw transmission rate.
The fixed overhead comes from sources like software
overhead, speed of light delay, etc.
For a wide area link, such as a 1000km T3 line at
45Mb/sec, the per-byte component of the transmission
time is 0.178µs per byte, or 17.8µs for a 100 byte
packet. This is eclipsed by the overhead due to the
speed of light, which at 5ms is much larger than any of
the other components. So for wide area links the per-
byte component of the transmission time is negligible
compared to the speed of light delay.
For modems, it is a different story. The distance is
typically not very far, so speed of light delay should be
negligible. The data rate is low, so it takes a long time
to send each byte. The per-byte transmission time
should account for most of the time taken to send the
packet. To send 100 bytes over a 28.8 modem should
take:

100 bytes * 8 bits per byte / 28800 bits per second
= 28ms

That means the round-trip should be 56ms. In fact it’s
often more like 260ms. What’s going on?
There are two other factors contributing to the time
here:
1. Modems are often connected via serial ports.
Many modem users assume that if they connect their
28.8 modem to their serial port at 38.4 kbit/sec they
won’t limit their performance, because 38.4 > 28.8. It’s
true that the serial port won’t limit their throughput, but
it will add delay, and delay, once added, never goes
away:

100 bytes * 10 bits per byte / 38400 bits per second
= 26ms for the computer to send 100 bytes down
serial port to the modem

2. Modems try to group data into blocks.
The modem will wait for about 50ms to see if more
data is coming that it could add to the block, before it
actually starts to send the data it already has.
Let’s see what the total time is now:

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 6 —

26ms (100 bytes down serial port to modem)
50ms (modem’s waiting time)
28ms (actual transmission time over telephone line)
26ms (100 bytes up serial port at receiving end)
Total time = 130ms each way, or 260ms round-trip.

To make things worse, if both players are connected to
their respective ISPs by modem, then the total player-
to-player round-trip delay is 520ms, which is clearly
hopeless for any kind of tightly-coupled interactivity,
and this is reflected in the state of today’s networked
computer games.
Can we do anything to improve this?
One thing to notice is that the 38400baud serial con-
nection between the computer and the modem, which
many people don’t think of as being the bottleneck,
turns out to be responsible for 52ms of the delay. It’s
the biggest single contributor to delay — almost twice
as much as the actual communication over the tele-
phone line. What can we do about this? If you can con-
nect the modems at both ends at 115200baud instead of
38400baud, the serial port delay can be reduced to 9ms
at each end. Better, still if you can use an internal
modem on a plug-in card instead of one connected
through a serial port, the serial port delay can be elimi-
nated entirely, leaving us with a round-trip delay of
only 156ms.
Having eliminated the serial port delay, the next big-
gest contributor to delay is the fixed 50ms overhead.
Why is there a fixed 50ms overhead at all? The reason
is that modern modems offer lots of ‘features’. They do
compression and automatic error correction. To get
effective compression and error correction they have to
work on blocks of data, not individual characters, and
that means that as characters arrive down the serial port
they have to corral them into a buffer until they have a
block big enough to work on efficiently. While the
characters are being accumulated in the buffer, they’re
not being sent over the phone line. 100 bytes is not
really enough for the modem to work on effectively, so
it would like a bigger block. After you have sent the
100 bytes to the modem, it waits to see if more char-
acters are coming. After some time — about 50ms — it
realizes that no more characters are coming, so it had
better compress and ship what it has. That 50ms the
modem spends watching an idle serial port hoping for
more data is wasted time. The time is lost. The packet
has now been delayed by an unnecessary 50ms, and
there’s no way to ‘un-delay’ it.
The reason for this design decision is that modems
were originally designed with remote terminal access
in mind. They were designed to take the characters that
a human types and group them together in little blocks

to send. They were designed to take the characters that
the mainframe at the other end printed out, and group
them together in little blocks to send. The only indica-
tion the modem had that the user had finished typing,
or that the mainframe had finished printing what it was
going to print, was when the data stream paused. No
one was going to tell the modem that the data had
finished and no more would be coming for a while. It
had to guess.
This is no longer the case. Most people these days are
using modems to connect to the Internet, not old main-
frames. Internet traffic is made up of discrete packets,
not a continuous stream of characters, but the modem
doesn’t know that. It still thinks it is sending a continu-
ous stream of characters (from someone who types
really fast).
There’s a really simple fix for this problem. We could
simply make modems be aware that they are sending
Internet packets. When a modem sees the SLIP (Serial
Line IP) End-Of-Packet character (0xC0), it should
realize that the packet is now complete, and immedi-
ately begin work on compressing and sending the block
of data it has, without waiting for a 50ms pause. This
simple fix would eliminate the 50ms fixed overhead,
and should allow us to achieve a 56ms round-trip delay
over a modem SLIP connection — almost five times
better than what typical modems achieve today.
It should be realized that this solution fixes the symp-
tom, not the underlying root cause of the problem. The
root cause of the problem is that the modem is not
aware of what is going on. It doesn’t know that a DNS
(Domain Name Service) packet is a very urgent packet,
because the computer is stuck waiting, unable to
proceed until it receives the answer, whereas a TCP
acknowledgment packet is less urgent, and delaying it a
little won’t cause any great problem. The same thing
applies to compression. The modem will try to
compress image data that has already been compressed
with JPEG, and video data that has already been
compressed with MPEG. All of it’s futile efforts to
help result in no benefit, and just add crippling latency
to the transmission time. The modem thinks it’s
helping by trying to compress the data. I’m reminded
of the line from the film Total Recall: “Don’t think. I
don’t give you enough information to think.”
The correct solution to this problem is that the modula-
tion/demodulation functions of the modem hardware
should be more closely tied to the host computers CPU
and its networking software, which does know what is
going on. It knows which data might benefit from
compression, and which will not. It knows which data
is urgent, and which data is not.

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 7 —

Ironically, Apple could do this today with the hardware
it already has. The Apple Geoport telecom adapter,
which has suffered so much criticism, may offer an
answer to this problem. The Apple Geoport telecom
adapter connects your computer to a telephone line, but
it’s not a modem. All of the functions of a modem are
performed by software running on the Mac. The main
reason for all the criticism is that running this extra
software takes up memory slows down the Mac, but it
could also offer an advantage that no external modem
could ever match. Because when you use the Geoport
adapter the modem software is running on the same
CPU as your TCP/IP software and your Web browser,
it could know exactly what you are doing. When your
Web browser sends a TCP packet, there’s no need for
the Geoport modem software to mimic the behaviour
of current modems. It could take that packet, encode it,
and start sending it over the telephone line immedi-
ately, with almost zero latency.
Sending 36 bytes of data, a typical game-sized packet,
over an Apple Geoport telecom adapter running at
28.8kb/s could take as little as 10ms, making it as fast
as ISDN, and ten times faster than the current best
modem you can buy. For less than the price of a typical
modem the Geoport telecom adapter would give you
Web browsing performance close to that of ISDN.
Even better, all the people who already own Apple
Geoport telecom adapters wouldn’t need to buy any-
thing at all — they’d just need a software upgrade. So
far Apple has shown no interest in pursuing this
opportunity, which is good news for everyone else in
the industry.
I should clarify that I’m not saying that having a
modem do compression never helps. In the case where
the host software at the endpoints is not very smart, and
doesn’t compress its data appropriately, then the
modem’s own compression can compensate somewhat
for that deficiency and improve throughput. The point
is that modem compression only helps dumb software,
and it actually hurts smart software by adding extra
delay. For someone planning to write dumb software
this is no problem. For anyone planning to write smart
software this should be a big cause for concern.

Service Models
Having considered modem-induced delays, we should
also consider delays within the network itself.
The appropriate service model for a worldwide com-
munications network is a hot topic of debate. On the
one side, the computer community favours a datagram
model where individual packets are addressed and
delivered like letters in the US mail. On the other side,
the telephony community favours a virtual-circuit

model where predictable connections are set up, used,
and then torn down, like telephone calls.
This difference of opinion can be summarised thus:

The computer community says, “Give me your
packet, and I’ll do my best to deliver it.”
The telephony community says, “Tell me in
advance what your bandwidth requirement is,
and I’ll set you up a guaranteed virtual-circuit if I
can, or give you a busy signal if I can’t.”

The big debate basically comes down to the question of
whether all types of communication can be described
in terms of a particular ‘bandwidth requirement’ (or
indeed whether any types of communication aside from
voice telephone calls can be characterized that way).
Do ATM-style virtual circuit connections with band-
width reservations have anything useful to offer for
traffic other than voice data?
A sound wave is a continuous phenomenon, like the
flow of water through a pipe. Computers however like
to deal with discrete events, like key strokes and mouse
clicks, so to deal with sound computers (and the digital
telephone network) break the continuous wave form
into discrete units by sampling it with a analogue-to-
digital converter. These samples are taken very rapidly,
at 8000 times per second for low-quality audio up to
48000 times per second for high quality audio.
Although this is a finite number of discrete samples per
second, there enough of them that for the purpose of
networking we can treat audio data as if it were a
continuous fluid stream.
This makes audio data very predictable. It begins, it
continues for some duration with some fixed data rate,
and then it ends. For the duration of the sound, it
behaves like a continuous flow, like water in a pipe. To
play sound we have to deliver the sampled values to
the sound hardware at very precise intervals. For tele-
phone quality audio there are 8000 samples per second,
so we have to deliver one sample every 125µsec.
That’s a fairly exacting real-time requirement, but each
sample is a small piece of data — typically 8 or 16 bits.
In contrast video data is quite different. Each sample
(frame) is much bigger, often several kilobytes, but
there are only 30 of them per second, or less. What’s
more, if a single occasional video frame is lost or
delayed, the screen can continue showing the previous
frame and the viewer will most likely not notice. In
contrast, if we were to lose 1/30 of second of audio data,
the listener would most definitely hear a disturbing
click. In addition, compressed video frames are not all
the same size. This means that video does not really
have a fixed bandwidth requirement like audio does,

Latency and the Quest for Interactivity Stuart Cheshire, November 1996

— 8 —

and it’s not even that sensitive to occasional losses.
What it does need, like audio, is low latency delivery.
Lots of applications, not just voice and video, require
good interactivity and hence low latency. The key point
is that while these applications need low latency, they
don’t need a continuous stream of low latency packets
the way voice does. If my tank in Bolo2 is traveling
North, with a certain speed, turning at a certain rate,
etc., then all the other machines playing the game can
continue to extrapolate the smooth movement of the
tank without needing to see a constant flow of packets.
I don't need to send another packet until I change my
speed, or rate or turn, etc. That smooth extrapolation of
movement is called dead-reckoning. Dead-reckoning
works fine for displaying convincing-looking smooth
motion until the vehicle hits or otherwise interacts with
one of the other participants. It is how to solve those
interactions that is the problem. A vehicle just floating
along, minding it’s own business, not interacting with
anything is easy, and dead-reckoning is a good way to
get smooth motion without excessive network traffic.
The life of a vehicle is typically long periods of unin-
teresting movement, punctuated by brief episodes of
interaction. It is to handle those brief episodes of inter-
action that we need to send occasional low-latency
packets.
This is why reservations don’t buy us what we need. A
reservation reserves a continuous uniform data flow at
a certain rate. What interactive software needs is not a
continuous uniform data flow, but low latency for the
occasional intermittent packets it does send. Only voice
needs a continuous uniform data flow. We need net-
works that can deliver us low-latency without requiring
us to reserve (and pay for) a continuous bandwidth
stream for our occasional intermittent packets.
To get good latency what we need is prioritization of
network packets, not virtual-circuits with reserved
bandwidth. We need to be able to mark packets (say
with bits in the header) to indicate their level of ur-
gency. Of course, network service providers may de-
cide to charge more for sending priority packets. Users
who wish to pay more for better quality service will
still be able to. The difference is that the better quality
service will in the form of high priority packets not
virtual circuits, reservations and guarantees.
Some computer network game companies are already
using techniques like this. Rather than using bits in the
header to indicate packet priority, they make deals with
Internet service providers that packets from their IP
addresses should be given top priority and sent out

2 Multi-player networked tank battle game for the
Apple Macintosh

first. This makes no detectable difference to the ISP or
its other customers because video games produce so
few packets compared to other uses like Web brows-
ing, but it makes a big difference to the quality of
interaction that that game players experience. Now, if
only they weren’t using such slow modems…

Section 4:
Conclusions
To improve the quality of computer network interac-
tion, we need to do two things:
1. We need to aggressively eliminate all causes of

unnecessary latency in our computer hardware and
software.

2. For interactions with the other side of the planet,
we can never beat the speed of light, so we need to
develop latency-hiding techniques that give us the
illusion of interactivity when true interactivity is
not possible.

As long as customers think that what they want is more
throughput, and they don’t care about latency, modem
makers will continue to make design decisions that
trade off worse latency for better throughput.
Modems are not the only problem here. In the near
future we can expect to see a big growth in areas such
as ISDN, Cable TV modems, ADSL modems and even
Wireless ‘modems’, all offering increases in band-
width. If we don’t also concentrate on improved
latency, we’re not going to get it.
One first step in this process would be for the industry
to adopt a modem latency rating scheme. TEN, MPath,
Catapult, Sandcastle and the other network gaming
companies could collaborate to set this up. Modems
that can achieve a round-trip delay below say, 100ms,
could be authorized to place a sticker on the box saying
“Gameplay approved” and the gaming companies
could encourage their customers to buy only modems
that are “Gameplay approved”.
If we don’t start caring about latency, we’re going to
find ourselves in a marketplace offering nothing but
appallingly useless hardware.

References
[Dem89] A. Demers, S. Keshav and S. Shenkar,
Analysis and Simulation of a Fair Queueing Algorithm,
Proceeding of ACM SIGCOMM ’89, Zurich,
Switzerland, pp. 3-12, August 1989.
[Par92] A. Parekh, A Generalized Processor Sharing
Approach to Flow Control - The Single Node Case,
Proceedings of IEEE INFOCOM '92, San Francisco,
March 1992.

